Tracking control based on neural network strategy for robot manipulator

نویسنده

  • Rong-Jong Wai
چکیده

This study presents a sliding-mode neural-network (SMNN) control system for the tracking control of an n rigid-link robot manipulator to achieve high-precision position control. The aim of this study is to overcome some of the shortcomings of conventional robust controllers such as a model-based adaptive controller requires the system dynamics in detail; the fuzzy rule learning scheme has a latent stability problem; an adaptive control scheme for robot manipulator via fuzzy compensator requires strict constrained conditions and prior system knowledge. In the SMNN control system, a neural network controller is developed to mimic an equivalent control law in the sliding-mode control, and a robust controller is designed to curb the system dynamics on the sliding surface for guaranteeing the asymptotic stability property. Moreover, an adaptive bound estimation algorithm is employed to estimate the upper bound of uncertainties. All adaptive learning algorithms in the SMNN control system are derived from the sense of Lyapunov stability analysis, so that system-tracking stability can be guaranteed in the closed-loop system whether the uncertainties occur or not. Computer simulations of a two-link robot manipulator verify the validity of the proposed control strategy in the possible presence of uncertainties and di4erent trajectories. The proposed SMNN control scheme possesses two salient merits: (1) it guarantees the stability of the controlled system, and (2) no constrained conditions and prior knowledge of the controlled plant is required in the design process. This new intelligent methodology provides the designer with an alternative choice to control an n rigid-link robot manipulator. c © 2002 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

adaptive control of two-link robot manipulator based on the feedback linearization method and the proposed neural network

This paper proposes an adaptive control method based on the feedback linearization technique and a proposed neural network,  for tracking and position control of an industrial manipulator. At first, it is assumed that the dynamics of the system are known and the control signal is constructed  by the feedback linearization method. Then to eliminate the effects of the uncertainties and external d...

متن کامل

Adaptive Voltage-based Control of Direct-drive Robots Driven by Permanent Magnet Synchronous Motors

Tracking control of the direct-drive robot manipulators in high-speed is a challenging problem. The Coriolis and centrifugal torques become dominant in the high-speed motion control. The dynamical model of the robotic system including the robot manipulator and actuators is highly nonlinear, heavily coupled, uncertain and computationally extensive in non-companion form. In order to overcome thes...

متن کامل

Voltage Control Strategy for Direct-drive Robots Driven by Permanent Magnet Synchronous Motors

Torque control strategy is a common strategy to control robotic manipulators. However, it becomes complex duo to manipulator dynamics. In addition, position control of Permanent Magnet Synchronous Motors (PMSMs) is a complicated control. Therefore, tracking control of robots driven by PMSMs is a challenging problem. This article presents a novel tracking control of electrically driven robots wh...

متن کامل

Hybrid Concepts of the Control and Anti-Control of Flexible Joint Manipulator

This paper presents a Gaussian radial basis function neural network based on sliding mode control for trajectory tracking and vibration control of a flexible joint manipulator. To study the effectiveness of the controllers, designed controller is developed for tip angular position control of a flexible joint manipulator. The adaptation laws of designed controller are obtained based on sliding m...

متن کامل

Adaptive RBF network control for robot manipulators

TThe uncertainty estimation and compensation are challenging problems for the robust control of robot manipulators which are complex systems. This paper presents a novel decentralized model-free robust controller for electrically driven robot manipulators. As a novelty, the proposed controller employs a simple Gaussian Radial-Basis-Function Network as an uncertainty estimator. The proposed netw...

متن کامل

Saturated Neural Adaptive Robust Output Feedback Control of Robot Manipulators:An Experimental Comparative Study

In this study, an observer-based tracking controller is proposed and evaluatedexperimentally to solve the trajectory tracking problem of robotic manipulators with the torque saturationin the presence of model uncertainties and external disturbances. In comparison with the state-of-the-artobserver-based controllers in the literature, this paper introduces a saturated observer-based controllerbas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2003